SWITCHING POWER SUPPLY

I — INTRODUCTION

SCOPE OF MANUAL. This instruction manual covers the installation and operation of the Kepco MTW 15W Switching Power Supply, Model MTW 15-51212K.

DESCRIPTION. The Kepco MTW 15W is a PC card style, triple-output switching power supply. Units may be operated with a nominal 100 to 120 V a-c and 220 to 240 V a-c (input voltage range 85 to $265 \mathrm{Va}-\mathrm{c}$), $50-60 \mathrm{~Hz}$ (input frequency range $47-440 \mathrm{~Hz}$). They will also operate on 110 V to 370 V d-c input. The MTW 15 W employs a light weight ferrite core with $30-250 \mathrm{KHz}$ switching frequency. Regulation is provided by pulse width modulation. Integral regulator chips provide smooth isolated d-c outputs. The $\pm 12 \mathrm{~V}$ outputs have a common return. DC Output power is shared between $+5 \mathrm{~V},+12 \mathrm{~V}$ and -12 V (15 W max. total). A thermistor circuit prevents excessive turn-on current surge. Overvoltage protection is provided. Overcurrent protection with automatic recovery from short circuit is featured. A steel cover (Model CA 39) is available as an option.
Table 1 contains output specifications. Section II (following) contains specifications and operating limits.

II - SPECIFICATIONS

The following specifications are at nominal input voltages at $25^{\circ} \mathrm{C}$ unless otherwise specified.
TABLE 1. MTW 15W OUTPUT SPECIFICATIONS

SPECIFICATION		OUTPUT 1	OUTPUT 2	OUTPUT 3	CONDITON
OUTPUT VOLTS, d-c		5 V	+12	-12V	+5V floating from $\pm 12 \mathrm{~V}$
SETTING TOLERANCE (V)		4.75-5.25	11.4-12.6	11.4-12.6	
ADJUSTMENT RANGE		FIXED	FIXED	FIXED	
OUTPUT CURRENT (A)	RATED	2.0	0.3	0.2	
	MINIMUM	0	0	0	
	PEAK ${ }^{(4)}$	3.0	0.6	0.3	Within 10 seconds.
SOURCE EFFECT		0.4\% max.	0.4\% max.	0.4\% max.	85-132Va-c, 170-265Va-c
LOAD EFFECT		2\% max.	1\% max.	1\% max.	10-100\% load
TEMPERATURE EFFECT		1\% max.	1\% max.	1\% max.	-10 to $50^{\circ} \mathrm{C}$
COMBINED EFFECT		2\% max.	2\% max.	2\% max.	Overshoot at startup: 4\% typ.
TIME EFFECT (Drift)		2\% max.	1\% max.	1\% max.	1/2 to 8 hr .
OVERCURRENT (AMPS) ${ }^{(2)}$		3.15 min.	0.63 min.	0.32 min .	
OVERVOLTAGE SETTING (VOLTS) ${ }^{(3)}$		5.7 min .	-	-	
EFFICIENCY (typ.)	$100 \mathrm{Va}-\mathrm{c}$	71\%	71\%	71\%	
	$240 \mathrm{Va}-\mathrm{c}$	70\%	70\%	70\%	
ACCEPTABLE OUTPUT CAP. ($\mu \mathrm{Fmax}$.)		10000	5000	-	Fixed load resistance
$\begin{aligned} & \text { RIPPLE } \\ & \text { AND } \\ & \text { NOISE } \\ & (\mathrm{mV} \mathrm{p}-\mathrm{p}) \end{aligned}$	ripple (typ)	100	120	120	
	ripple (-10-0 ${ }^{\text {a }}$)	140 max.	160 max.	160 max.	
	spike noise (typ)	120	150	150	
	spike noise (-10-0 ${ }^{\text {a }} \mathrm{C}$)	160 max.	180 max.	180 max.	
(1) Switching component $\leq 20 \mathrm{KHz}, 0$ to 100% load, 0 to 60 ${ }^{\circ} \mathrm{C}$, tested with $100 \mu \mathrm{~F}$ electrolytic and $0.1 \mu \mathrm{~F}$ film capacitors across the load and connected to the power supply via 5.9 in (150 mm) wires. (2) Hold back method; automatic recovery after cause of overcurrent is removed. Avoid overcurrent operation to prevent component degradation.			Zener diode clamp method; protects load against faulty power supply; operation could require power supply service. Peak current acceptable as long as rms output current within 10 seconds is within rated value.		

INPUT VOLTAGE:

Nominal $100-120 \mathrm{~V}$ a-c, $200-240 \mathrm{~V}$ a-c, range: $85-265 \mathrm{~V}$ a-c (0 to 100% load, -10 to $60^{\circ} \mathrm{C}$)
$\mathrm{d}-\mathrm{c}$ range: $110-370 \mathrm{~V}$ d-c (Safety agency approval applies only to a-c input operation.)

INPUT SOURCE FREQUENCY:

Nominal $50 / 60 \mathrm{~Hz}$; Range $47-440 \mathrm{~Hz}$. (0 to 100% load, -10 to $60^{\circ} \mathrm{C}$).

INPUT CURRENT: (maximum load at $25^{\circ} \mathrm{C}$ with nominal output voltage): 0.42A typ. ($100 \mathrm{Va}-\mathrm{c}$ input, 100% load); 0.25A typ. ($240 \mathrm{Va}-\mathrm{c}$ input, $100 \% \mathrm{load}$)

INPUT PROTECTION AND SOFT START: A thermistor circuit reduces start-up surge. Units are protected against shorts by an input fuse. Fuse value 2A, 250V.
INPUT SURGE: First surge only, not including current flow into EMI filter.
25A typ. (100 V a-c, 100% load, $25^{\circ} \mathrm{C}$ cold start); 50A typ. ($240 \mathrm{Va}-\mathrm{c}, 100 \%$ load, $25^{\circ} \mathrm{C}$ cold start)

LEAKAGE CURRENT:

0.75 mA max, 0.2 mA typ at 100 V a-c $(60 \mathrm{~Hz}$ single pole switching) in conformance to DENAN.
0.75 mA max, 0.3 mA typ at $240 \mathrm{~V} \mathrm{d-c}(60 \mathrm{~Hz}$ single pole switching in conformance to UL 60950/IEC 60950-1)

POWER FACTOR: 0.55 typ. at 100 Va-c, 0.45 typ. at $240 \mathrm{Va}-\mathrm{c}$
TRANSIENT RECOVERY: A step load change from 50% to 100% of rated load in 50 microseconds or more, produces no more than 4% output voltage excursion. Temperature range from -10 to $60^{\circ} \mathrm{C}$.
OUTPUT HOLDING TIME: Upon input interruption the output is maintained for 150 milliseconds typical with 240 Va-c input voltage, and for 20 milliseconds typical with $100 \mathrm{Va}-\mathrm{c}$ input voltage. The condition for output load is 100%.
START UP TIME: 100 mS max. $(+5 \mathrm{~V}, \pm 12 \mathrm{~V})$ at $100 \mathrm{Va}-\mathrm{c}$, Output voltage may not rise with constant current load. .
OVERVOLTAGE PROTECTION: Fixed, factory set. See Table 1. The overvoltage circuit is set by Zener diode clamp.
OVERCURRENT: Hold back method, output voltage returns to rated level upon removal of cause (long term overcurrent could damage unit)
OPERATING TEMPERATURE: -10 to $60^{\circ} \mathrm{C}$ (start up -20 to $-10^{\circ} \mathrm{C}$). See the derating plot, Figure 1. Do not allow the power supply to become dust covered because that will decrease the cooling efficiency of the unit and cause insulation to deteriorate.

STORAGE TEMPERATURE: $-30^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
COOLING: Natural convection
ORIENTATION: Horizontal (see Figure 2).
HUMIDITY: 10% to 90% relative humidity, operating and storage, noncondensing, wet bulb temperature $\leq 35^{\circ} \mathrm{C}$

WITHSTANDING VOLTAGE:

(at 5 to $35^{\circ} \mathrm{C}$ ambient, 45 to 85% relative humidity, cutout current 10 ma):
Between input and output terminals, 3.0 KV a-c for 1 minute.
Between input and chassis, 2000 V a-c for 1 minute.
Between output terminals and chassis, 500 V a-c for 1 minute.
INSULATION RESISTANCE: (500 V d-c, 5 to $35^{\circ} \mathrm{C}$ ambient, 45 to 85% relative humidity) Between input and output, input and chassis, and output and chassis:100 megohms minimum.

VIBRATION: Three axes, one hour each, sweep time 10 min ;, nonoperating
$5-10 \mathrm{~Hz} ., 10 \mathrm{~mm}$ amplitude; $10-200 \mathrm{~Hz} ., 2 \mathrm{G}\left(19.6 \mathrm{~m} / \mathrm{s}^{2}\right)$ acceleration

FIGURE 1. DERATING PLOT

SHOCK: Three axes, $60 \mathrm{G}\left(588 \mathrm{~m} / \mathrm{s}^{2}\right), 11 \mathrm{~ms} \pm 5 \mathrm{msec}$ pulse duration, three shocks each axis, nonoperating, $1 / 2$ sine pulse
SAFETY: Meets UL 60950-1.c-UL and TÜV Rheinland EN60950-1 (ambient temp. $50^{\circ} \mathrm{C}$ max,). Meets creepage and clearance requirements of DENAN Appendix 8 (at 100V a-c only). MTW 15W units are CE marked per the Low Voltage Directive (LVD), EN60950. [The standards do not apply with DC input operation]

EMC - EMISSIONS:

Conducted Noise 0.15 MHz to 30 MHz : FCC Class B, VCCI-B, EN55011-B, EN55022-B

EMC - IMMUNITY:

ESD: EN 61000-4-2 Level 4, Normal operation.
Radiated Field Noise: EN 61000-4-3 Level 3, Normal operation.
Electrical Fast Transient/Burst (EFT): EN 61000-4-4 Level 3, Normal operation.
Surge: EN 61000-4-5 Level 4, no damage.
Conducted Noise: EN 61000-4-6 Level 3, Normal operation.
Power Frequency Magnetic Field: EN 61000-4-8 Level 4, Normal operation.
Voltage Dips, Short Interruptions, Voltage Variation: EN 61000-4-11, Normal operation.
ELECTROLYTIC CAPACITOR: Life expectancy: 10,000 hours min. (ambient temp. $50^{\circ} \mathrm{C}$)
WARRANTY: One year.

III — INSTALLATION

MOUNTING THE POWER SUPPLY: Refer to Figures 2, 3 and 4. The unit may be mounted on one mounting surface. The air surrounding the power supply must not exceed the ambient temperature values given in the graph in Figure 1.

KEPCO, INC. 131-38 SANFORD AVENUE FLUSHING, NY. 11352 U.S.A. TEL (718) 461-7000 FAX (718) 767-1102 http://www.kepcopower.com email: hq@kepcopower.com

INSTALLATION (INSULATION): Install unit 0.3 inches (8 mm) away from base with the use of 0.24 inch (6 mm) diameter spacers attached to the PC board. Keep at least 0.16 inches (4 mm) spacing around and above the unit to comply with insulation and safety requirements. An insulator must be used if the spacing is less than 0.16 inches (4 mm) (see Figure 3).
VENTILATION: It is recommended to keep at least 0.40 inches $(10 \mathrm{~mm})$ clearance from adjacent equipment for proper ventilation
CONNECTIONS: Connect a load to the +5 V output of the power supply by connecting pins 1,2 of output connector CN 2 (+5 V) to the load $(+)$ terminal, and pins 3, 4 (5 V Return) to the load (-) terminal (see Figure 4 for input/output connector/pin locations). Connect a load to the +12 V output of the power supply by connecting pin $5(+12 \mathrm{~V})$ of connector CN2 to the load $(+)$ terminal, and pin 6 ($\pm 12 \mathrm{~V}$ Return) to the load $(-)$ terminal. Connect a load to the -12 V output of the power supply by connecting pin $8(-12 \mathrm{~V})$ of connector CN 2 to the load (-) terminal, and pin $7(\pm 12 \mathrm{~V}$ Return) to the load (+) terminal. The AC input power is applied via input connector CN1. Make sure to connect the AC input Neutral and Line wires to pins 3 and 1, respectively, of CN1 (see Figure 2). See Table 2 for mating connector information. A Cable Kit (P/N 2190485) is available as an option from Kepco. The kit includes an input cable, terminated on one end with an input mating connector; and an output cable, terminated on one end with an output mating connector.

NOTES:

1. METHOD A (STANDARD) RECOMMENDED, APPLY DERATING CURVE PER FIGURE 1.
2. OTHER METHODS NOT ALLOWED (INADEQUATE COOLING).

FIGURE 2. MOUNTING DIRECTION

NOTES:

1. MAINTAIN MINIMUM 0.16 IN. [4 MM] CLEARANCE TO SATISFY INSULATION AND WITHSTAND VOLTAGE REQUIREMENTS; OTHERWISE USE ADEQUATE INSULATOR. 2. MINIMUM 0.39 IN . [10MM] CLEARANCE RECOMMENDED FOR ADEQUATE COOLING. 3. INSTALL POWER SUPPLY AT LEAST 0.32 IN . [8MM] ABOVE BASE USING SPACERS, 3043034 (MAXIMUM DIA. 0.23 IN . [6MM]).

FIGURE 3. VENTILATION AND INSULATION REQUIREMENTS

FIGURE 4. MTW 15W MECHANICAL OUTLINE DIAGRAM
TABLE 2. INPUT/OUTPUT MATING CONNECTORS

Connector	MTW 15W Connector	Mating Connector ${ }^{(2)}$	
		Socket Housing	Terminal Pin
Input	B3P5-VH-B $^{(1)}$	VHR-5N $^{(1)}$	SVH-21T-P1.1 $^{(1)}$
Output	B8B-XH-A-2		
NOTES: 1. Manufacturer: Japan, Solderless Terminal Mfg. Co. Ltd, VH Series 2. Optional cable kit (KIT 219-0485) includes one input and one output cable (one meter long) with mating connectors for CN 1 (input) and CN2 (output), unterminated at other end.			

